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The stability of the incompressible attachment-line boundary layer is studied by 
solving a partial-differential eigenvalue problem. The basic flow near the leading edge 
is taken to be the swept Hiemenz flow which represents an exact solution of the 
Navier-Stokes (N-S) equations. Previous theoretical investigations considered a 
special class of two-dimensional disturbances in which the chordwise variation of 
disturbance velocities mimics the basic flow and renders a system of ordinary- 
differential equations of the Orr-Sommerfeld type. The solution of this sixth-order 
system by Hall, Malik & Poll (1984) showed that the two-dimensional disturbance is 
stable provided that the Reynolds number R < 583.1. In the present study, the 
restrictive assumptions on the disturbance field are relaxed to allow for more general 
solutions. Results of the present analysis indicate that unstable perturbations other 
than the special symmetric two-dimensional mode referred to above do exist in the 
attachment-line boundary layer provided R > 646. Both symmetric and antisymmetric 
two- and three-dimensional eigenmodes can be amplified. These unstable modes with 
the same spanwise wavenumber travel with almost identical phase speeds, but the 
eigenfunctions show very distinct features. Nevertheless, the symmetric two- 
dimensional mode always has the highest growth rate and dictates the instability. As 
far as the special two-dimensional mode is concerned, the present results are in 
complete agreement with previous investigations. One of the major advantages of the 
present approach is that it can be extended to study the stability of compressible 
attachment-line flows where no satisfactory simplified approaches are known to exist. 

1. Introduction 
Our investigation into attachment-line boundary-layer stability is stimulated by 

renewed interest in the design of laminar-flow swept wings in recent years. On a swept 
wing, it is known that multiple instability mechanisms can operate simultaneously to 
cause transition from laminar to turbulent flow. In flight tests, Gray (1952) was the first 
to observe that the boundary-layer transition on a swept wing occurred at a location 
much closer to the leading edge than that on a corresponding unswept wing. A decade 
later, further investigations of two pioneering Laminar Flow Control (LFC) programs, 
the X-21 (Pfenninger 1965) and British Handley Page (Gaster 1967), showed that once 
the turbulent attachment-line boundary layer had been established, suction systems 
deployed were not able to maintain the flow on the rest of the wing surface in the 
laminar state. This demonstrated that, from an LFC viewpoint, there is little point in 
considering other instability mechanisms if the attachment-line boundary layer is not 
laminar. Thus, the attachment-line boundary-layer stability represents a practical 
problem of great importance. 
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If the boundary-layer thickness is much smaller than the surface radius of curvature 
at the leading edge, the characteristics of the infinite swept attachment-line boundary- 
layer flow can be described by the classical Hiemenz flow (Rosenhead 1963) with the 
addition of a homogeneous spanwise velocity component. The resulting viscous layer 
is of constant thickness. One important feature of this flow is that it is an exact solution 
of the incompressible Navier-Stokes equations, not just the boundary-layer equations. 
This important feature allows a self-consistent stability analysis and a search for the 
critical Reynolds number. The term ‘boundary layer’ in this paper refers to the 
‘viscous layer’ and does not imply the high Reynolds number approximation. 

Poll (1978) made an attempt to predict the critical Reynolds number based on the 
parallel assumption; both chordwise ( U )  and wall-normal ( V )  velocity components of 
the basic flow were neglected so that the stability equations simply reduced to the 
classical Orr-Sommerfeld equation. The critical Reynolds number (R,) was predicted 
to be close to 270 based on momentum thickness along the attachment line. Later, 
Hall, Malik & Poll (1984, referred herein as HMP) made the first successful non- 
parallel stability analysis by studying a particular two-dimensional disturbance of the 
swept Hiemenz flow. They solved the linear stability equations obtained by assuming 
that the chordwise component of the perturbation velocity u’ depends linearly on the 
chordwise coordinate x. The disturbance is a travelling Tollmien-Schlichting wave and 
can be written as 

where /3 is the spanwise wavenumber of the disturbance. They found the critical 
Reynolds number R, to be about 235 which is in good agreement with the experimental 
data of Pfenninger & Bacon (1 969) and Poll (1979). 

This particular x-dependence of the two-dimensional disturbance was first proposed 
and used by Gortler (1955) and Hammerlin (1955) in studying the stability of two- 
dimensional stagnation-point flow. There was no a priori justification for making this 
assumption. The only reason for considering this type of disturbance is that variables 
become completely separable and governing equations reduce to more amenable 
ordinary differential equations. Wilson & Gladwell (1978) noted that the solutions 
studied by Hammerlin could exhibit either exponential or algebraic decay away from 
the boundary layer. They further argued that disturbances arising in the boundary 
layer, without free stream forcing, should decay exponentially. If only the exponentially 
decaying disturbances are allowed, then the two-dimensional stagnation-point flow is 
found to be stable to all disturbances of the type described by (1). (For a more detailed 
discussion, the reader is referred to HMP.) Furthermore, for parallel flows, even 
though Squire’s theorem shows that the critical Reynolds number is given by a two- 
dimensional disturbance, no equivalent theorem is known for swept Hiemenz flow. 
Only recently, the direct numerical simulation performed by Spalart (198S), for a single 
Reynolds number R, = 243, gave support to the use of disturbances described by (1). 
Yet, the behaviour of three-dimensional disturbances has never been explored before, 
except in the asymptotic limit of large Reynolds number (Hall & Seddougui 1990). 

It is now well known that the attachment-line boundary-layer flow is one of a few 
flows subject to subcritical instability, which means the instability may occur with 
finite-amplitude perturbations while linear theory predicts stability for all infinitesimal 
disturbances. This phenomenon was recognized as the leading-edge contamination 
problem in many previous investigations. Recently, two independent wind tunnel 
studies conducted by Poll & Danks (1995), and by Juillen & Arnal(l995) show that the 
turbulence propagating along the attachment line can be relaminarized by applying 
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surface suction. The result agrees well with the direct numerical simulations of Spalart 
(1 988). Since the mechanisms behind attachment-line contamination and relam- 
inarization are believed to be highly nonlinear, they are beyond the scope of this paper. 

In this paper, we report on a generalized approach suited to studying the stability of 
attachment-line boundary layers. The approach is described here for incompressible 
flow but it is easily extendable to compressible flows. The stability is determined by 
solving the partial-differential eigenvalue problem resulting from the linearized 
stability equations. This is in contrast to previous investigations where a sixth-order 
ordinary-differential equation of the Orr-Sommerfeld type was used. The advantages 
of the method developed here can be summarized as follows: 

(i) Neither the parallel assumption nor the restriction on disturbance is necessary, 
i.e. no prior knowledge about the solution is required. 

(ii) Two- and three-dimensional disturbances can be studied simultaneously. 
(iii) A number of low-instability modes are determined along with the most unstable 

mode. 
(iv) The method is easily extendable to the compressible attachment-line flow with 

surface curvature effect, where, in general, the linear stability equations do not admit 
solutions in the form of (1). 

Here we report results for the incompressible case to establish the applicability of 
this new approach. Results of this study place the use of (1) for incompressible stability 
on firm ground. We also show the existence of new instability modes which do not 
conform to (1). In 92 we describe the three-dimensional swept Hiemenz flow. In $ 3  we 
formulate the stability equations and present the solution techniques. Section 4 
contains the results while the conclusions are drawn in $5.  

2. Basic flow 
For viscous incompressible flow over a swept body, the local solution in the vicinity 

of the attachment line can be represented by the swept Hiemenz flow if the boundary- 
layer thickness is small compared with the radius of the leading edge. Following the 
notation of HMP, the x-axis is taken to be the chordwise direction, the y-axis is in the 
direction normal to the surface, and the z-axis is in the spanwise direction, as shown 
in figure 1. The parameters of this flow are 

1/2 - W, A A = ( $ )  , R=-, V 

where v is the kinematic viscosity, 1 is a length scale in the x-direction, while U, and W, 
are independent velocity scales; d is the boundary-layer length scale, and R is the 
Reynolds number. The relationship between R and R, is R, = 0.404R. The swept 
Hiemenz solution is then given by 

where x = x*/A,  y = y * / A  (asterisks represent the dimensional quantities), and U, 5, w 
satisfy 

U+D‘ = 0 
iY + g2 - - v v  -” -1 = o ,  

w”--ww’ = 0, 

d(0) = 0, v(0) = 0, $(a) = - 1, w(0) = 0, w ( a )  = 1 
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Y,, = 206 

FIGURE 1 .  Coordinate system for attachment-line boundary-layer flow. 

A simple shooting method, such as methods based on the Runge-Kutta formulae, can 
be used to solve the above equations in order to obtain the velocity profiles. The 
converged solution has D”(0) = - 1.23258765 and W ’ ( 0 )  = 0.57046525. For more 
details about this swept Hiemenz solution, readers are referred to Rosenhead (1963). 

3. Stability analysis 
The derivation of the linear stability equations for the attachment-line boundary 

layer is rather straightforward. We consider infinitesimally small disturbances 
propagating along the attachment line, so that the instantaneous velocities u, z1, and w 
and pressure p can be expressed as 

where q = (u ,  v, w,p), and barred and primed quantities represent basic-state and 
disturbance-state quantities, respectively. Substituting the above expression into the 
incompressible Navier-Stokes (N-S) equations, subtracting the basic state, and 
linearizing with respect to the small perturbations gives a set of linearized N-S 
equations which best describes the stability characteristics of small perturbations. In 
general, to solve this set of linearized N-S equations, which represents a set of partial 
different equations, is non-trivial. Therefore, in many studies the locally parallel 
assumption is routinely made to yield a reduced mathematical model which can be 
easily handled by the well-known normal-mode approach. However, it must be 
emphasized that in general there is no completely rational support for this parallel 
assumption, except for classes of flow such as plane Couette flow or Poiseuille flow. As 
pointed out earlier, HMP were able to treat the stability problem of the swept Hiemenz 
flow without the parallel flow approximation, but only for a special class of 
disturbances. 

3.1. The two-dimensional eigenvalue problem 
In this paper, we proceed from the linear N-S equations without making any further 
simplifications, and recognize that the problem consists of a set of coupled three- 
dimensional partial-differential equations with variable coefficients. These coefficients, 
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which depend on the basic flow, change strongly in the normal ( y )  direction and 
linearly in the chordwise (x) direction, but not in the spanwise ( z )  direction; see (3). As 
a consequence, the solution is separable in the variables z and t ,  and the disturbance 
quantities of a general travelling mode can be expressed in the form 

( 5 )  
In this investigation, we only consider stability in the temporal sense. For a temporal 
stability formulation, p is real and represents the spanwise wavenumber, and c is 
the complex phase velocity whose real part represents the propagating speed of the 
disturbance in the spanwise direction and its imaginary part is proportional to the 
temporal growth rate. Then, the set of non-dimensional linear N-S equations can be 
written as 

q’(x, y ,  z ,  t )  = g(x, y )  exp [ip(z - ct)] + C.C. 

-a6 -ad a v  - 
-ipc6+ U-+ V-+6-+ipW6 = 

ax ay ay 

All the quantities are scaled by the same set of reference parameters described in $2. 
Note that the introduction of the method of separation of variables reduces the three- 
dimensional linear partial-differential equations to two-dimensional ones in the x, y 
domain. 

Similar to the plane Poiseuille flow, two fundamentally different types of solution are 
conceivable here. As far as the spanwise disturbance-velocity component is concerned, 
it is possible to have a symmetric solution, i.e. $(x, y )  = $( -x ,  y ) ,  and an antisymmetric 
solution, i.e. $(x,y) = - $( -x, y) .  For the plane Poiseuille flow, it has been shown that 
the antisymmetric disturbances are always damped (Orszag 197 1). However, for the 
attachment-line boundary-layer flow, no similar conclusion in this aspect has been 
reported before. As a matter of fact, our study finds that both symmetric and 
antisymmetric perturbations can be amplified in the attachment-line boundary layer. 
Results for both types of disturbances will be discussed in $4. 

Before discussing the method of solving the system of equations, appropriate 
boundary conditions must be prescribed. The corresponding boundary conditions in 
the y-direction are 

(7) 

which assign zero-disturbance amplitudes to the solid surface ( y  = 0) and at the far 
field ( y +  a). In the x-direction, the boundary conditions for symmetric modes are 

ti = 5 = $ = 0, y = 0,Cx-J 

G ( x , Y )  = - z i ( - ~ , y ) ,  ~ ( x , Y )  = ~ ( - x , Y ) ,  $(x,Y) = G(-x,Y), x = x,,,. (8b) 

Note that, since 6 is symmetric with respect to the attachment line, which is assumed 
to be located at x = 0, the 6 must also be symmetric and zi must be antisymmetric such 
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that the continuity equation can always be satisfied. By the same token, the appropriate 
boundary conditions in the x-direction for antisymmetric modes are 

, x = o ,  (9 4 

zi(x, y )  = ti( - x, y) ,  qx, y )  = - e( - x, y) ,  q x ,  y )  = - - x, y) ,  x = x,,,. (9b)  

azi 
ax 
- = f i = = t i , = o  

At this point, it may not seem clear how an oblique mode could be investigated by 
this method. Owing to the non-uniform nature of the Hiemenz flow in the x-direction, 
the method is aimed at studying the stability of an oblique Tollmien-Schlichting wave 
in the following form: 

= QR<x, y )  e’[P*-wtI + C.C., 

where O,(x, y )  = GR(x, y )  exp i s5 a(&) dt. The above equation represents an oblique 
wave (i.e. a three-dimensional wave) propagating in both the positive x- and z- 
directions. (The two-dimensional mode, of course, corresponds to a(x) = 0.) However, 
owing to the symmetry of the Hiemenz flow with respect to x = 0, it is conceivable that 
an identical disturbance propagating toward the negative x (still in the positive z)  
direction should also be possible. The linear combination of these two waves can be 
expressed as 

7 = Q,(x, y )  ei[Pz-wtI + Q,(x, y )  ei[Pz-wtI + C.C. 
+c.c., (1 1) = F(x, y )  e i[,%?-wtl 

where F(x, y )  = Q,(x, y )  + QL(x, y).  For a symmetric mode, 

Q,<x, y )  = Q,( - x, v> + &, v> = R - x, Y )  for 01, w’, P’, 
Q,<x, y )  = - Q,( - x, y )  + F(x, y )  = - F( - x, y )  for u’. 

} (12) 

Note that the linear combination does not alter the eigenvalue which could be either 
/3 or o. Thus, for oblique modes, the eigenfunctions obtained by the current method 
actually represent the sum of a pair of oblique waves travelling, however, in different 
x-directions. We would like to emphasize that the effect of wavenumber a(x) is 
implicitly retained in the eigenfunction in this approach. 

The computational domain is chosen to be enclosed by (0 < y < y,,,) and 
(- x,,, d x < x,,,). The semi-infinite domain in y is truncated at y = ymaz. Here ymaz 
is the location where free-stream boundary conditions are satisfied, and ymaz = 206 is 
found adequate and is used throughout this paper. Similarly, the domain in the x- 
direction is truncated at 1x1 = x,,,. At this moment, the selection of x,,, is not clear 
since there is no obvious length scale in the x-direction. Numerical experiments show 
that the choice of xmaz has a significant effect on the condition number of the resulting 
algebraic system of equations. It is found that with a given set of grids the resulting 
system of equations could have a prohibitively large condition number if x,,, is chosen 
to be too small. Fortunately, the condition number drops quickly as x,,, increases. A 
detailed discussion about the effect of x,,, on the numerical solution will also be given 
in $4. 

Equations (6 a-d) together with their appropriate homogeneous boundary con- 
ditions form a two-dimensional partial differential eigenvalue problem. The numerical 
method used to discretize the equations and to ascertain eigenvalues will be discussed 
in the next section. 
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FIGURE 2. Grid and computational domain for attachment-line stability solutions of the 
two-dimensional partial-differential eigenvalue problem. 

3.2. Numerical method for two-dimensional stability equations 
We use the Chebyshev spectral collocation method for y-discretization of (6) and 
regular polynomials {P,(x) = xn, n = 0, 1,2, . . .} for the x-discretization. An algebraic 
stretching is applied to map the physical domain in the wall-normal direction, 
0 < y < ymax, into the computational domain, - 1 < 6 < 1, as well as to cluster points 
near the wall (see figure 2). The algebraic stretching is defined as 

l + f  
b - f ’  

y = a -  (13) 

where b = 1 +2a/ym,,, and a = yiymax/(ymax- 2yJ. This mapping will put half of the 
collocation points within the region 0 < y < yi. The collocation points in the 
computational plane are the Gauss-Lobatto points 

, j =  1,2 ,..., nu. n(j-  1) = cos- 
nu- 1 

In the x-direction, the spatial discretization employs uniformly distributed grid points : 

i =  1,2 ,..., n,. 

Now, the disturbance variable 4 can be represented as the double series 
n,-i ny-l 

4(x,Y) = c c cn,kpn(x) &([), 
n=O k=O 

where the Pn are the regular polynomials referred to above and G the Chebyshev 
polynomials of degree k. In the x-direction, both symmetric and antisymmetric 
solutions (with respect to the attachment line) are possible. For symmetric (even) 
solutions, all of the coefficients with n odd vanish identically, i.e. cn,! = 0 for n odd. 
Conversely, the expansions with c , , ~  = 0 for n even are antisymmetric (or odd). It is 
convenient to choose n, even so that n, = 2m. Equation (16) can then be written as 



246 

for even solutions, and 
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for odd solutions. With the above even and odd expansions, the symmetric and the 
antisymmetric boundary conditions in the x-direction can be satisfied automatically. 

In the y-direction, if all the collocation points are used for all the dependent 
variables, i.e. (zi, 6, G,$), then the discrete linear system will be underdetermined. 
Therefore, two extra artificial compatibility conditions must be imposed at y = 0 and 
y = ymaz.  Here, we use Neumann conditions on pressure as 

where Xn and X ,  are evaluated by using the normal momentum equation and the 
continuity equation at the two boundaries. These two extra boundary conditions are 
needed because we have not used a staggered grid as described by Malik, Zang & 
Hussaini (1985). The spatial derivatives of 4 at collocation points are accomplished by 
matrix operations. The derivative matrices can be computed either by directly 
differentiating the interpolating polynomial constructed on the set of collocation points 
or by means of a transform method (see Canuto et al. 1987). 

The governing equations in the discrete sense can be represented as a generalized 
algebraic eigenvalue problem of the form 

where the A matrix is complex, full, non-Hermitian, while the B matrix is real, 
diagonal, and singular. With n,(= 2m) and ny collocation points in the x- and y-  
directions, respectively, the order of the complex matrix eigenvalue problem is 4n, m. 
This indicates that even with a moderate spatial resolution, the order of the matrix can 
easily reach a few thousands. Thus the two-dimensional eigenvalue problem is quite a 
challenge compared to the one-dimensional problem. Here, the eigenvalue c is 
determined by using the QR matrix eigenvalue algorithm (Wilkinson 1965). The 
approach is to first form A-lB followed by reducing A-'B to Hessenberg form H, and 
then find all the eigenvalues (l/c) of H by QR iteration. The advantage of this method 
is that a number of low-instability modes are determined along with the most unstable 
mode. The disadvantages are that the number of operations and computer storage 
needed to determine the eigenvalues are extensive. 

4. Results and discussion 
A systematic grid study has been carried out to determine an appropriate spatial 

resolution in the x-direction such that converged solutions can be achieved by the 
present partial-differential eigenvalue approach. Our experience of the one-dimensional 
analysis corresponding to that of HMP indicated that y,,, = 206 and ny = 43 
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nz cr 
4 0.35840982 

0.357 91 9 70 
0.360021 84 

8 0.35840982 
0.35791970 
0.357 435 40 
0.35695687 

12 0.35840982 
0.35791970 
0.357435 40 
0.35695687 

c, ( x 102) 

0.58532472 
0.409 886 68 
0.19923 1 99 
0.58532472 
0.40988668 
0.23430007 
0.0585712 60 
0.58532472 
0.40988668 
0.23430006 
0.0585 71269 

Mode 

s 1  
A1 
A2* 
S1 
A1 
s 2  
A2 
s1 
A1 
s 2  
A2 

TABLE 1. The effect of the chordwise resolution on eigenvalues of swept Hiemenz flow for 
R = 800, = 0.255, and x,,, = 116; * denotes that the solution is not converged 

Symmetric modes 

x,,, c, c, ( x lo2) Rcond 

86 0.35840982 0.58532472 3.1 x 

46 0.35840982 0.58532465 5 . 4 ~  

26 0.35840953 0.58526147 4.1 x lo-@ 

6 0.35828997 0.63922098 1.8 x lo-’ 

0.35743540 0.23430008 

0.35743540 0.23430008 

0.35743555 0.23443775 

0.358291 79 0.10723099 

Antisymmetric modes 

c r  c, ( x 102) Rcond 

0.35791970 0.40988667 5.7 x 
0.35695687 0.058571 289 
0.35791970 0.40988657 7.9 x 
0.35695687 0.058571 555 
0.35791997 0.40987375 4.7 x lo-* 
0.35695625 0.58571304 
0.36056275 0.036414497 1.2 x lo-’ 
0.35364430 0.031 523 171 

TABLE 2. Effect of x,,, on computed eigenvalues for R = 800, /? = 0.255, y,,, = 206, nu = 43, and 
n, = 12. Rcond = reciprocal of the L1 condition number of A. 

constitute a set of satisfactory parameters. Our major interest here is focused on finding 
their counterparts in the x-direction. In table 1 ,  we document all of the unstable 
eigenvalues computed here for R = 800, ,8 = 0.255, and x,,, = 118. Results indicate 
that the two-dimensional eigenvalue method requires only four chordwise collocation 
points (n,  = 4, or m = 2) to have converged first symmetric (Sl) and the first 
antisymmetric (Al) modes, up to eight significant digits. With n, = 8, the second 
symmetric (S2) and antisymmetric (A2) modes are also fully resolved. However, no 
other unstable modes were found by further increasing the chordwise resolution up to 
n, = 24. In all our subsequent calculations, results show that the most unstable mode 
is always the first symmetric (Sl) mode and the temporal growth rates of different 
modes follow the relation, S1 > A1 > S2 > A2 > S3 > . . . , without exception. Another 
interesting observation is that unstable modes with identical spanwise wavenumber 
always travel with very similar phase speeds. The phase speed increases slightly as the 
growth rate goes up, but the difference is typically less than 0.5%. The linear 
interaction between modes having comparable phase speeds can give rise to 
disturbances in the form of modulated wave packets, which have been recorded by the 
hot-wire measurements of Pfenninger & Bacon (1969) in laminar attachment-line 
boundary layers. 

To study the effect of the x-domain size on the computed solutions, a series of 
computations has been carried out with all the parameters fixed except the x,,,. 
Results are summarized in table 2. This shows that the condition number of matrix A 
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0.4 

0 
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I , , . . , . . .  L . . . .  I . . . . ,  

0.2 03 0.4 

P 
FIGURE 3. Variation of c, of symmetric and antisymmetric disturbances for swept Hiemenz flow at (a) 
R = 650, (b)  700, (c)  800 and ( d )  900. Solid lines: HMP solution; symbols: current results, 0,  
symmetric; A, antisymmetric. 

is a function of x,,,; its magnitude increases as x,,, decreases. Consequently, the 
once-converged eigenvalue begins to lose significant digits as the chordwise 
computational domain shrinks. Under the parameters considered in table 2, when 
x,,, < 26, the condition number of matrix A becomes so large that eigenvalues are 
fully contaminated by round-off errors. (All of the computations were performed on 
a CRAY Y-MP using single precision.) Evidence from further numerical experiments 
shows that as long as xmaZ is chosen to be greater than 28, converged solutions up to 
at least 6 significant digits can be achieved. 

Stability analyses for Reynolds numbers (R) equal to 650, 700, 800, and 900 have 
been performed by using the present two-dimensional eigenvalue approach. Figure 3 
shows the variation of temporal growth rate ci as a function of spanwise wavenumber 
/?. Also plotted in this figure are results obtained by using the linear stability theory of 
HMP. Extensive results have been reported by HMP using the method based on the 
disturbance described by (1). Since those solutions are mathematically admitted by the 
linear N-S equations, they serve as a check for the two-dimensional eigenvalue 
technique used here. The comparison indicates that the first symmetric mode (Sl) 
computed by the present two-dimensional eigenvalue approach fully recovers the 
solution of HMP. This provides a solid validation of our two-dimensional eigenvalue 
method. 
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FIGURE 4. Neutral curves for S1, Al ,  S2, and A2 modes of the swept Hiemenz flow. 
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In addition to the HMP solution, as the Reynolds number exceeds 650, the first 
unstable antisymmetric disturbance (A1 mode) emerges from below. For R = 900, four 
extra branches of unstable waves (Al ,  S2, A2, S3) coexist with the HMP solution, and 
the growth rate of the A1 mode is comparable to the most unstable S1 mode. It is 
conceivable that more branches of unstable travelling waves will arise as the Reynolds 
number becomes even higher. The neutral curves of these modes are given in figure 4. 
The critical Reynolds numbers from these curves are 583,646,707 and 765 for S1, A l ,  
S2 and A2 modes, respectively. Clearly, the lowest critical Reynolds number is 
determined by the HMP solution. This again places the use of disturbances of ( 1 )  in the 
study of incompressible attachment-line boundary-layer stability on firm ground. A 
similar conclusion has also been drawn by the direct numerical simulation performed 
by Spalart (1988). His simulation was performed at R = 600 (R, = 243) at which only 
the HMP (or S1) mode remains unstable according to the present analysis. As 
mentioned above, the linear interaction between unstable modes can create modulated 
wave packets. These modulated wave packets were first observed at R = 636, in the 
experiment conducted by Pfenninger & Bacon (1969). This is in good agreement with 
the critical Reynolds number of the A1 mode which is about 646 as shown in figure 4. 

Comparisons of the disturbance amplitude functions in the (x, y)-plane are given in 
figure 5(a,  b). All the solutions are normalized in such a way that the maximum value 
is 1 .  It can be seen that the amplitude of zi decays more quickly than the other two 
velocity components. This has been shown by HMP through examining the asymptotic 
behaviour of solutions at large y .  As shown in figure 5(a), the I4 and 6 amplitude 
functions of the S1 mode show absolutely no variation with x, as suggested by (1). On 
the other hand, for the rest of the unstable modes discovered here, disturbances off the 
attachment line consistently have larger amplitudes than those on the attachment line 
itself. By placing another hot wire 0.5 in. off the attachment line, Pfenninger & Bacon 
(1969) also observed a much larger spanwise (14) velocity fluctuation than that 
registered by the hot wire right on the attachment line, even when the perturbation 
amplitude was as small as 0.1 %. This experimental observation strongly suggests the 
existence of the low-instability modes discovered here. Interestingly, the growth of 
these disturbances with x suggests that nonlinearity will first appear away from the 
attachment line. 

A close examination of disturbance-amplitude functions in the (x, y)-plane reveals 
that among all of the unstable modes discovered here, only the S1 mode (HMP 
solution) truly represents a separable solution of (6a-d). To illustrate this point, 
without losing generality, we assume that zi is separable and can be expressed as 

zi = X(x) Y ( y )  = x"u"(y), 
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FIGURE 5. The distribution of normalized eigenfunctions for R = 900, /3 = 0.255; (a) symmetric 
modes; (b)  antisymmetric modes. The magnitude of eigenfunctions at various x stations increases 
with x. 
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where m must be determined by satisfying the governing equations and by permitting 
a complete separation of variables. From the continuity equation, the other two 
velocity components must be proportional to xm-l .  Furthermore, if the pressure 
amplitude function is assumed to be 

B = x"pP"(y>, 

then it can be shown that the x-dependency cannot be completely removed from the 
momentum equations except for the very special case of rn = 1 and m p  = 0, for which 
the separable solution studied by HMP is recovered. 

Figure 6(a, b) shows the phase relations in the (x, y)-plane. It can be seen that except 
for the S1 mode, all other modes display different degrees of phase variation in the x- 
direction. In other words, the S1 mode represents the only true two-dimensional 
disturbance, while other modes clearly are three-dimensional disturbances. However, 
the first antisymmetric mode (Al) can easily be mistaken for a two-dimensional wave 
if only phase information at one side of the attachment line is gathered in experiments. 
This is best illustrated by figure 7 ,  which shows wavefront geometries of spanwise 
disturbances in the (x, z)-plane at a fixed y .  This capability of studying both two- and 
three-dimensional disturbances simultaneously makes the two-dimensional eigenvalue 
method an effective tool for future compressible attachment-line applications, for 
which three-dimensional disturbances are expected to be the most relevant 
disturbances. 

As mentioned before, the attachment-line boundary-layer flow is known to be 
subject to sub-critical instability. As suggested by Landau (1944), there should be a 
global critical Reynolds number, below which all disturbances, infinitesimal and finite, 
decay ultimately. Experiments show that for attachment-line flow the global critical 
Reynolds number is about R = 250 (Pfenninger 1965; Gaster 1967; Poll 1978; Arnal 
& Juillen 1989), which is much lower than that given by the linear stability theory. Hall 
& Malik (1986) performed a weakly nonlinear and numerical analysis based on the 
two-dimensional disturbance (S1 mode) and reported a subcritical limit of R z 530. 
Clearly, the gap between this two-dimensional calculation and the experimental results 
is still very wide. Hall & Seddougui (1990) used triple-deck theory coupled with the 
high-Reynolds-number approximation to investigate the stability of three-dimensional 
modes, and used weakly nonlinear theory to study their interaction with the two- 
dimensional disturbance. Their results show that the interaction causes the de- 
stabilization of the two-dimensional mode and is responsible for the breakdown of 
the two-dimensional modes at a finite distance from the attachment line. Therefore, it 
seems that three-dimensionality may be the dominant factor in the above-mentioned 
discrepancy. What role the three-dimensional modes discovered here may play in the 
subcritical instability might be worth exploring. 

To provide an idea about how these unstable disturbances would affect the flow 
structure, a three-dimensional instantaneous velocity field is constructed according to 
the formula 

(22) 

where g = (u, v, w), and 7 is a free parameter which controls the magnitude of the 
disturbance. Here 7 is chosen in such a way that 

(23) 

The disturbance is chosen to be either the S1 mode or A1 mode. To gain insight into 
the velocity field, the particle-trace technique is used to visualize the flow structure. 

g(x7 y ,  z) = G(x,  Y )  + 7 Re [ax, Y )  @*I 7 

Max (w'(x, y ,  z ) )  = 0.2 q. 
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FIGURE 6. The phase relationship of unstable disturbances of (a) symmetric, and (b)  
antisymmetric modes at R = 900 and p = 0.255. 
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FIGURE 7. The wavefront geometries of spanwise velocity disturbances at R = 900 and 
/3 = 0.255, in the (x, z)-plane at a fixed y .  

Y = 6  

-30 

FIGURE 8. Computed particle trace of the attachment-line flow under the influence of the two 
most dangerous disturbances: (a )  S1 modes; (b)  A1 mode. 

Results are shown in figure 8(a, b). It can be seen that the attachment line remains 
straight under the influence of a symmetric disturbance. The vortex structure has its 
axis in the chordwise direction, as shown in figure 8(a). On the other hand, an 
antisymmetric disturbance makes the attachment line wind back and forth across the 
highlight, see figure 8 (b). These particle-trace pictures provide a qualitative depiction 
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of the attachment-line boundary-layer flow in the presence of symmetric and 
antisymmetric modes. 

5.  Conclusion 
The stability of incompressible attachment-line boundary layers has been studied by 

using the two-dimensional eigenvalue approach, in which the linearized partial 
differential stability equations are solved numerically. The particular mean flow is 
taken to be the swept Hiemenz flow which represents an exact solution to the 
Navier-Stokes equations. According to the previous result of HMP, a two-dimensional 
symmetric travelling disturbance was known to be unstable for this flow, and the 
critical Reynolds number was found to be R = 583.1. In this paper, using the present 
approach, new travelling modes have been identified for R > 646. These new modes 
can be split into two major categories, symmetric and antisymmetric. We have shown 
that both symmetric and antisymmetric modes can be amplified by the swept 
attachment-line boundary layer. However, the most unstable mode is found to be the 
two-dimensional symmetric disturbance considered earlier by HMP. These new low- 
instability modes are mainly three-dimensional travelling waves with phase speed very 
close to that of the most unstable two-dimensional wave. There appears to be some 
experimental evidence (Pfenninger & Bacon 1969) which supports the existence of these 
modes ; however, further studies (both experimental and computational) are needed to 
investigate the characteristics of these modes and, particularly, their role in the 
attachment-line boundary-layer transition. 

Results of the present study show that the two-dimensional eigenvalue approach can 
be a very effective tool for examining the stability characteristics of more general 
attachment-line boundary layers than the swept Hiemenz flow. This study also builds 
confidence in directly extending the current method to the stability analysis of 
compressible attachment-line boundary layers where the linear stability problem 
cannot be studied by simplified approaches previously used for incompressible flows. 

On a typical swept wing, driven by the favourable pressure gradient near the leading 
edge, the boundary-layer flow accelerates away from the attachment line and shortly 
enters the crossflow instability region. A possible connection between attachment-line 
and crossflow instabilities had been suggested by Hall & Seddougui (1990). By 
choosing a computational domain large enough in the x-direction to cover both the 
attachment-line instability and crossflow instability regions, and by using an 
appropriate spatial resolution, the two-dimensional eigenvalue approach can provide 
us with a means to explore this connection. However, this extension might not be trivial 
and it would require the development of relatively more sophisticated numerical 
techniques for solving eigenvalues of very large non-Hermitian matrices. 

This work was sponsored under NASA Contracts NAS1-19299 and NAS 1-20059, 
Langley Research Center. 
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